Hypergraph based Subnetwork Extraction using Fusion of Task and Rest Functional Connectivity
نویسندگان
چکیده
Functional subnetwork extraction is commonly used to explore the brain’s modular structure. However, reliable subnetwork extraction from functional magnetic resonance imaging (fMRI) data remains challenging due to the pronounced noise in neuroimaging data. In this paper, we proposed a high order relation informed approach based on hypergraph to combine the information from multi-task data and resting state data to improve subnetwork extraction. Our assumption is that task data can be beneficial for the subnetwork extraction process, since the repeatedly activated nodes involved in diverse tasks might be the canonical network components which comprise pre-existing repertoires of resting state subnetworks [1]. Our proposed high order relation informed subnetwork extraction based on a strength information embedded hypergraph, (1) facilitates the multisource integration for subnetwork extraction, (2) utilizes information on relationships and changes between the nodes across different tasks, and (3) enables the study on higher order relations among brain network nodes. On real data, we demonstrated that fusing task activation, task-induced connectivity and resting state functional connectivity based on hypergraphs improves subnetwork extraction compared to employing a single source from either rest or task data in terms of subnetwork modularity measure, inter-subject reproducibility, along with more biologically meaningful subnetwork assignments.
منابع مشابه
Coactivated Clique Based Multisource Overlapping Brain Subnetwork Extraction
Subnetwork extraction using community detection methods is commonly used to study the brain’s modular structure. Recent studies indicated that certain brain regions are known to interact with multiple subnetworks. However, most existing methods are mainly for non-overlapping subnetwork extraction. In this paper, we present an approach for overlapping brain subnetwork extraction using cliques, w...
متن کاملModularity Reinforcement for Improving Brain Subnetwork Extraction
Functional subnetwork extraction is commonly employed to study the brain’s modular structure. However, reliable extraction from functional magnetic resonance imaging (fMRI) data remains challenging. As representations of brain networks, brain graph estimates are typically noisy due to the pronounced noise in fMRI data. Also, confounds, such as region size bias, motion artifacts, and signal drop...
متن کاملResting-state Functional Connectivity During Controlled Respiratory Cycles Using Functional Magnetic Resonance Imaging
Introduction: This study aimed to assess the effect of controlled mouth breathing during the resting state using functional magnetic resonance imaging (fMRI). Methods: Eleven subjects participated in this experiment in which the controlled “Nose” and “Mouth” breathings of 6 s respiratory cycle were performed with a visual cue at 3T MRI. Voxel-wise seed-to-voxel maps and whole-brain region of i...
متن کاملChanges in Effective Connectivity Network Patterns in Drug Abusers, Treated With Different Methods
Introduction: Various treatment methods for drug abusers will result in different success rates. This is partly due to different neural assumptions and partly due to various rate of relapse in abusers because of different circumstances. Investigating the brain activation networks of treated subjects can reveal the hidden mechanisms of the therapeutic methods. Methods: We studied three groups o...
متن کاملEvaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions
Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018